582 research outputs found

    A Note on Solitons in Brane Worlds

    Get PDF
    We obtain the zero mode effective action for gravitating objects in the bulk of dilatonic domain walls. Without additional fields included in the bulk action, the zero mode effective action reproduces the action in one lower dimensions obtained through the ordinary Kaluza-Klein (KK) compactification, only when the transverse (to the domain wall) component of the bulk metric does not have non-trivial term depending on the domain wall worldvolume coordinates. With additional fields included in the bulk action, non-trivial dependence of the transverse metric component on the domain wall worldvolume coordinates appears to be essential in reproducing the lower-dimensional action obtained via the ordinary KK compactification. We find, in particular, that the effective action for the charged (p+1)-brane in the domain wall bulk reproduces the action for the p-brane in one lower dimensions.Comment: 13 pages, LaTe

    Supergravity, Non-Conformal Field Theories and Brane-Worlds

    Get PDF
    We consider the supergravity dual descriptions of non-conformal super Yang-Mills theories realized on the world-volume of Dp-branes. We use the dual description to compute stress-energy tensor and current correlators. We apply the results to the study of dilatonic brane-worlds described by non-conformal field theories coupled to gravity. We find that brane-worlds based on D4 and D5 branes exhibit a localization of gauge and gravitational fields. We calculate the corrections to the Newton and Coulomb laws in these theories.Comment: 24 pages, Latex, 2 figure

    A Slowly Rotating Charged Black Hole in Five Dimensions

    Full text link
    Black hole solutions in higher dimensional Einstein and Einstein-Maxwell gravity have been discussed by Tangherlini as well as Myers and Perry a long time ago. These solutions are the generalizations of the familiar Schwarzschild, Reissner-Nordstrom and Kerr solutions of four-dimensional general relativity. However, higher dimensional generalization of the Kerr-Newman solution in four dimensions has not been found yet. As a first step in this direction I shall report on a new solution of the Einstein-Maxwell system of equations that describes an electrically charged and slowly rotating black hole in five dimensions.Comment: Talk given at GR17: 17th International Conference on General Relativity and Gravitation, Dublin, 18-24 Jule,2004 ; Corrected typos, minor changes, new formula adde

    Gauge-Dependent Cosmological "Constant"

    Get PDF
    When the cosmological constant of spacetime is derived from the 5D induced-matter theory of gravity, we show that a simple gauge transformation changes it to a variable measure of the vacuum which is infinite at the big bang and decays to an astrophysically-acceptable value at late epochs. We outline implications of this for cosmology and galaxy formation.Comment: 14 pages, no figures, expanded version to be published in Class. Quantum Gra

    Probing partially localized supergravity background of fundamental string ending on Dp-brane

    Get PDF
    We study the dynamics of the probe fundamental string in the field background of the partially localized supergravity solution for the fundamental string ending on Dp-brane. We separately analyze the probe dynamics for its motion along the worldvolume direction and the transverse direction of the source Dp-brane. We compare the dynamics of the probe along the Dp-brane worldvolume direction to the BIon dynamics.Comment: 20 pages, LaTeX, revised version to appear in Phys. Rev.

    Equivalence Between Space-Time-Matter and Brane-World Theories

    Get PDF
    We study the relationship between space-time-matter (STM) and brane theories. These two theories look very different at first sight, and have different motivation for the introduction of a large extra dimension. However, we show that they are equivalent to each other. First we demonstrate that STM predicts local and non-local high-energy corrections to general relativity in 4D, which are identical to those predicted by brane-world models. Secondly, we notice that in brane models the usual matter in 4D is a consequence of the dependence of five-dimensional metrics on the extra coordinate. If the 5D bulk metric is independent of the extra dimension, then the brane is void of matter. Thus, in brane theory matter and geometry are unified, which is exactly the paradigm proposed in STM. Consequently, these two 5D theories share the same concepts and predict the same physics. This is important not only from a theoretical point of view, but also in practice. We propose to use a combination of both methods to alleviate the difficult task of finding solutions on the brane. We show an explicit example that illustrate the feasibility of our proposal.Comment: Typos corrected, three references added. To appear in Mod. Phys. Let

    The Cardy-Verlinde Formula and Charged Topological AdS Black Holes

    Full text link
    We consider the brane universe in the bulk background of the charged topological AdS black holes. The evolution of the brane universe is described by the Friedmann equations for a flat or an open FRW-universe containing radiation and stiff matter. We find that the temperature and entropy of the dual CFT are simply expressed in terms of the Hubble parameter and its time derivative, and the Friedmann equations coincide with thermodynamic formulas of the dual CFT at the moment when the brane crosses the black hole horizon. We obtain the generalized Cardy-Verlinde formula for the CFT with an R-charge, for any values of the curvature parameter k in the Friedmann equations.Comment: 10 pages, LaTeX, references adde

    Dilatonic p-Branes and Brane Worlds

    Get PDF
    We study a general dilatonic p-brane solution in arbitrary dimensions in relation to the Randall-Sundrum scenario. When the p-brane is fully localized along its transverse directions, the Kaluza-Klein zero mode of bulk graviton is not normalizable. When the p-brane is delocalized along its transverse directions except one, the Kaluza-Klein zero mode of bulk graviton is normalizable if the warp factor is chosen to increase, in which case there are singularities at finite distance away from the p-brane. Such delocalized p-brane can be regarded as a dilatonic domain wall as seen in higher dimensions. This unusual property of the warp factor allows one to avoid a problem of dilatonic domain wall with decreasing warp factor that free massive particles are repelled from the domain wall and hit singularities, since massive particles with finite energy are trapped around delocalized p-branes with increasing warp factor by gravitational force and can never reach the singularities.Comment: 13 pages, LaTe

    The Effective Energy-Momentum Tensor in Kaluza-Klein Gravity With Large Extra Dimensions and Off-Diagonal Metrics

    Get PDF
    We consider a version of Kaluza-Klein theory where the cylinder condition is not imposed. The metric is allowed to have explicit dependence on the "extra" coordinate(s). This is the usual scenario in brane-world and space-time-matter theories. We extend the usual discussion by considering five-dimensional metrics with off-diagonal terms. We replace the condition of cylindricity by the requirement that physics in four-dimensional space-time should remain invariant under changes of coordinates in the five-dimensional bulk. This invariance does not eliminate physical effects from the extra dimension but separates them from spurious geometrical ones. We use the appropriate splitting technique to construct the most general induced energy-momentum tensor, compatible with the required invariance. It generalizes all previous results in the literature. In addition, we find two four-vectors, J_{m}^{mu} and J_{e}^{mu}, induced by off-diagonal metrics, that separately satisfy the usual equation of continuity in 4D. These vectors appear as source-terms in equations that closely resemble the ones of electromagnetism. These are Maxwell-like equations for an antisymmetric tensor {F-hat}_{mu nu} that generalizes the usual electromagnetic one. This generalization is not an assumption, but follows naturally from the dimensional reduction. Thus, if {F-hat}_{mu nu} could be identified with the electromagnetic tensor, then the theory would predict the existence of classical magnetic charge and current. The splitting formalism used allows us to construct 4D physical quantities from five-dimensional ones, in a way that is independent on how we choose our space-time coordinates from those of the bulk.Comment: New title, editorial changes made as to match the version to appear in International Journal of Modern Physics
    • …
    corecore